
ISRAEL JOURNAL OF MATHEMATICS 141 (2004), 221-233 

GENERALIZED DEGREE AND OPTIMAL 
LOEWNER-TYPE INEQUALITIES 

BY 

SERGEI V. IVANOV* 

Steklov Mathematical Institute 
Fontanka 27, RU-191011 St. Petersburg, Russia 

e-mail: svivanov~pdmi.ras.ru 

AND 

~/~IKHAIL G. KATZ** 

Department of Mathematics and Statistics, Bar Ilan University 

Ramat Gan 52900, Israel 

e-mail: katzmik@math.biu.ac.il 

ABSTRACT 

We generalize optimal inequalities of C. Loewner and M. Gromov, by 
proving lower bounds for the total volume in terms of the homotopy 
systole and the stable systole. Our main tool is the construction of an 
area-decreasing map to the Jacobi torus, streamlining and generalizing 
the construction of the first author in collaboration with D. Burago. It 
turns out that one can successfully combine this construction with the 
coarea formula, to yield new optimal inequalities. 

1. Loewner's and Gromov's optimal inequalities 

Over half  a cen tury  ago, C. Loewner  proved tha t  the least length  sys 1 ('IF 2) of a 

noncont rac t ib le  loop on a R i e m a n n i a n  2-torus ~l '2 satisfies the op t imal  inequal i ty  

(1.1) sysl (~2)2 ~ ~2 area('lF2), 
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where 72 = 2/x/~, cf. [Pu52, CK03]. 

An optimal generalisation of Loewner's inequality is due to M. Gromov [Gr99, 

pp. 259-260] (cf. [CK03, inequality (5.14)]) based on the techniques of D. Burago 

and S. Ivanov [BI94, BI95]. We give below a slight generalisation of Gromov's 

statement. 

Definition 1.1: Given a map f:  X -+ Y between closed manifolds of the same 

dimension, we denote by deg(f) either the algebraic degree of f when both 

manifolds are orientable, or the absolute degree, otherwise. 

We denote by A x  the Abel-Jacobi map of X, cf. formula (2.1); by %, the 

Hermite constant, cf. formula (5.1); and by stsysl(g ), the stable 1-systole of a 

metric g, cf. formula (5.3). 

THEOREM 1.2 (M. Gromov): Let X n be a compact manifold of equal dimension 

and first Betti number: dim(X) = bl (X)  = n. Then every metric g on X 

satisfies the following optimal inequality: 

(1.2) deg(Ax) stsys I (g)n < (Tn)n/2 VOln(g). 

The boundary case of equality in inequality (1.2) is attained by fiat tori whose 

group of deck transformations is a critical lattice in •n. 

Note that the inequality is nonvacuous in the orientable case only if the 

cuplength of X is n, i.e. the Abel-Jacobi map Ax is of nonzero algebraic 

degree. Recall that a critical lattice (i.e. one attaining the value of the Her- 

mite constant (5.1)) is in particular extremal, and being extremal for a lattice 

implies perfection and eutaxy [Bar57]. 

Having presented the results of Loewner and Gromov, we now turn to their 

generalisations, described in Sections 2 and 3. 

Our main tool is the construction of an area-decreasing map to the Jacobi 

torus, streamlining and generalizing the construction of [BI94], cf. [Gr99]. An 

important theme of the present work is the observation that one can success- 

fully combine this construction with the coarea formula, to yield new optimal 

inequalities. Historical remarks and a discussion of the related systolic literature 

can be found at the end of the next section. 

2. Genera l ized degree  and first t h e o r e m  

Let (X,g) be a Riemannian manifold. Let n = dim(X) and b = bl(X).  

Loewner's inequality can be generalized by optimal inequalities in two different 
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ways, as illustrated in Figure 2.1, where the constants 7n and 7" are defined in 

Section 5, while 

(2.1) Ax: X --+ ~b 

is the Abel Jacobi map ([Li69, Gr96], cf. [BK03B, (4.3)]) inducing isomorphism 

in 1-dimensional cohomology. 

deg(.A.x ) stsys 1 (g / '  
vol° (g) -< (Tb) b/2 

I v a n o f  
~ atz 

Loewner : ~ < 72 area(g) --  

stsysl(g) sys '~-l(g) < 7b 
vol. (g) 

Figure 2.1. Two generalisations of Loewner's theorem, cf. (2.3) and (2.5). 

The map Ax: X --+ T b lifts to a proper map 

(2.2) Ax: X -+ ~b, 

where ~b is the universal cover of the Jacobi torus. The corresponding fibers of 

.Ax and A x  (i.e. fibers which project to the same point of T b) are homeomor- 

phic. On the other hand, the nonvanishing of the homology class of the typical 

fiber of .Ax in Hn-b(X) is far weaker than the nonvanishing of the homology 

class of the typical fiber of Ax  in Hn-b(X) (and thus the resulting theorem is 

more interesting). For instance, for the standard nilmanifold of the Heisenberg 

group (cf. Remark 2.5) we have IX] ¢ 0, but the homology class of the fiber of 

Ax is trivial. The latter is true whenever n = b + 1. 

In the theorems below, to obtain a nonvacuous inequality, we replace the 

condition of nonvanishing degree in Gromov's theorem by the nonvanishing of 

the homology class [X] of the lift of the typical fiber of Ax  to the universal 

abelian cover X of X, cf. [Gr83, p. 101] and equation (2.2) below. In particular, 

we must have b < n to obtain a nonvacuous inequality. Following M. Gromov 

[Gr83, p. 101], we introduce the following notion of generalized degree. 

De~nition 2.h Denote by deg(Ax) the infimum of (n - b)-volumes of integral 

cycles representing the class [X] 6 Hn_b(X), if X is orientable, and infimum of 

volumes of Z2-cycles, otherwise. 
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Remark 2.2: This quantity is denoted 'deg' in [Gr83, p. 101]. When the dimen- 

sion and the first Betti number coincide, this quantity is a topological invariant. 

In general, of course, it is not. Yet it is remarkable that the nonvanishing of this 

quantity suffices to produce a nonvacuous volume lower bound of Theorem 1.3, 

generalizing Gromov's theorem 1.2. 

THEOREM 2.3: Let X be a compact manifold. Let n = dim(X) and b = bl(X),  

and assume b >_ 1. Then every metric g on X satisfies the inequality 

(2.3) deg(Cix) stsys l(g)b < (.Tb)b/2VOln(g). 

Here the stable 1-systole stsys l(g) is defined in formula (5.3). In particular, 

for n = b + 1 we obtain the following corollary. 

COROLLARY 2.4: Let X be a compact manifold. Let b = b l (X) .  Assume that 

dim(X) = b + 1, and IX] 7 ~ 0. Then every metric g on X satisfies the following 

optimal inequality: 

(2.4) stsysl (g)b sys 7t'1 (g) ~ (~b) b/2 vOlb+l(g), 

where sys 7rl (g) denotes the/east length of a shortest noncontractible loop for 

the metric g. 

Remark 2.5: To give an example where equality is attained in inequality (2.4), 

it suffices to take a Riemannian fibration by circles of constant length, over 

a flat torus whose group of deck tranformations is critical (choose the circles 

sufficiently short, so as to realize the value of the invariant sys ~h (g)). This can 

be realized, for instance, by compact quotients of left invariant metrics on the 

3-dimensional Heisenberg group (here b = 2), cf. [Gr83, p. 101]. 

The results of the present paper are further generalized in [BCIK]. A nonsharp 

version of inequalities (2.4) and (4.1) for an arbitrary pair b _< n was proved 

using different techniques in [KKS], resulting in an inequality with an extra 

multiplicative constant C(n) depending on the dimension but  not on the metric. 

Note that  a different sharp generalisation of Loewner's inequality was studied 

in [BK03A]: 

(2.5) stsys I (g) SySn_ 1 (g) ~ ")'~ vOln(g), 

where 7~ is the Berg@-Martinet constant, cf. (5.2). The work [BK03B] studies 

the boundary case of equality of a further generalisation of inequality (2.5). 
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We would like to point out an interesting difference between inequalities (2.4) 

and (2.5). Namely, inequalities for the 1-systole, such as (2.4), tend to be 

satified even by the ordinary (i.e. unstable) systole, cf. [Gr96, 3C1] and [CK03, 
(3.5)], albeit with a nonsharp constant. Meanwhile, inequality (2.5) for ordinary 

systoles is definitely violated by a suitable sequence of metrics, no matter what 

the constant, cf. [BaK98]. Volume lower bounds in terms of systoles and the 

study of the associated constants for 4-manifolds appear in [Ka03]. 

The work [CK03] surveys other universal (curvature-free) volume bounds and 

formulates a number of open questions, including the one about the existence 

of such a lower bound in terms of the least length of a nontrivial closed geodesic 

(perhaps contractible) on X, for any manifold X, cf. [NR02, Sa04]. 

3. Pu ' s  inequal i ty  and generalisations 

To state the next theorem, we need to recall the inequality of P. Pu. We record 

here a slight generalisation of the inequality from [Pu52]; see also [Iv02] for an 

alternative proof and generalisations. Namely, every surface (S, g) which is not 

a 2-sphere satisfies 

(3.1) sysT~l(g) 2 _~ ~ area(g), 

where the boundary case of equality in (3.1) is attained precisely when, on the 

one hand, the surface S is a real projective plane, and on the other, the metric 

g is of constant Gaussian curvature. 

The generalisation follows from Gromov's inequality (3.2) below (by com- 
paring the numerical values of the two constants). Namely, every aspherical 

compact surface (S, g) admits a metric ball 

=- Bp(~ sysTr l (g )  ) C B S 

1 of radius ~ sys lrl (g) which satisfies [Gr83, Corollary 5.2.B] 

4 area(B). (3.2) sysTh(g)2 -< 5 

Let S be a nonorientable surface, and let ¢: ~rl(S) ~ Z2 be an epimorphism 

from its fundamental group to Z2, corresponding to a map ¢: S ~ RP 2 of 

absolute degree +1. We define the "l-systole relative to ¢", denoted Csysl(g), 

of a metric g on S, by minimizing length over loops 7 which are not in the kernel 

of ¢, i.e. loops whose image under ¢ is not contractible in the projective plane: 

(3.3) ¢ SySy (g) = min length('~). 
¢([-yl)#o~z2 
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Does every nonorientable surface (S, g) and map ¢: S -* IRP 2 of absolute 

degree one satisfy the following relative version of Pu's inequality: 

7r 
(3.4) ¢sysl(g) 2 <_ ~ area(g)? 

This inequality is related to Gromov's (non-sharp) inequality (*)inter from 

[Gr96, 3.C.1]; see also [Gr99, Theorem 4.41]. This question appeared in [CK03, 

conjecture 2.7]. Let 

CSySl (9)  2 
(3.5) a2 = sup , 

(s,g) area(g) 

where the supremum is over all nonorientable surfaces S, metrics g on S, as well 

as maps ¢ as above. Thus we ask whether a2 = 7r/2. Calculating a2 depends on 

calculating the filling area of the Riemannian circle, cf. Proposition 3.1 below. 

PROPOSITION 3.1: We have the following estimate: a2 E [7r/2, 2]. 

Proof." If we open up a surface S as above along a shortest essential loop 3  ̀ (in 

the sense that  ¢([3']) 7 ~ 0), we obtain a Z2-filling E (possibly nonorientable) of a 

circle of length 2 length(3,). It is clear that  the boundary circle is imbedded in E 

isometrically as a metric space. Thus it suffices to prove that  that  the filling area 

of a circle of length 2rr is at least 7r2/2. Choose two points on the boundary circle 

at distance zr/2 from each other. Consider the map E --~ I~ ~ whose coordinate 

functions are the distances to these points. The map is area-decreasing, and its 

image contains a square of area ~r2/2 (encircled by the image of the boundary), 

namely the Pythagorean "diamond" inside the square [0, 7r] x [0, ~r] in the plane. 
| 

4. Second  t h e o r e m :  t he  case dim(X) = bl(X) + 2 

THEOREM 4.1: Let X be a compact nonorientable manifold. Let b = bl(X). 

Assume dim(X) = b + 2 and t[X] ~ O, where L: H2(X,Z2) -~ H2(K, Z2) is 

the homomorphism induced by a map to some aspherical space K.  Then every 

metric g on X satisfies the following inequality: 

b/2 (4.1) stsysl(g) bsysTh(g) 2 _< a2% volb+2(g), 

where a2 is the optimal systolic ratio from (3.5). 

The proof appears at the end of Section 8. 
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Remark 4.2: If, as conjectured, we have a2 = 7r/2, then the boundary case of 

equality in inequality (4.1) is attained by Riemannian submersions over a fiat 

critical torus, with minimal fibers isometric to a fixed real projective plane with 

a metric of constant Gaussian curvature. 

Example 4.3: For X = II~P 2 × ~I '2, we obtain the following inequality: 

stsysl (g)2 sys 71"1 (g)2 < 0.272 VO14 (g), 

which can be thought of as a "Pu-times-Loewner" inequality, cf. (1.1) and (3.1) 

(particularly if we prove that  a2 = 7r/2). 

5. La t t i ces ,  H e r m i t e  a n d  B e r g S - M a r t i n e t  c o n s t a n t s  

Given a lattice L C (B, I1" II) in a Banach space B with norm I1' II, denote by 

AI(L) -- AI(L, II" II) > 0 the least norm of a nonzero vector in L. Then the 

Hermite constant 7n > 0 is defined by the supremum 

/~1 (L) n 
(5.1) LcR~sup vol(i~n/i) - (%)n/2, 

where the supremum is over all lattices with respect to a Euclidean norm. The 

particular choice of the exponent n/2 may be motivated by the linear asymptotic 

behavior of % as a function of n -+ ec, cf. [LLS90, pp. 334 and 337]. 

A related constant 7~, called the Berg6-Martinet constant, is defined as 

follows: 

(5.2) 7~ = sup{~I(L))~I(L*)I L C_ Rb}, 

where the supremum is over all Euclidean lattices L. Here L* is the lattice dual 

to L. If L is the Z-span of vectors (xJ ,  then L* is the Z-span of a dual basis 

(yj) satisfying {xi, yy) = 5ij. 
In a Riemannian manifold (X, g), we define the volume yolk(a) of a Lipschitz 

k-simplex a: A k ~ X to be the integral over the k-simplex A k of the "volume 

form" of the pullback cr*(g). The stable norm IIhl[ of an element h ~ Hk(X, ~) 
is the infimum of the volumes yolk(c) = Eilr~] volk(ai) over all real Lipschitz 

cycles c = Eiriai representing h. We define the stable 1-systole of the metric g 

by setting 

(5.3) stsysl (g) = $1 (H1 (X, Z)R, I1 II), 

where [1" El is the stable norm in homology associated with the metric g. 
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6. A d e c o m p o s i t i o n  of  t he  J o h n  el l ipsoid  

The following statement may be known by convex set theorists. A proof may be 

found in in [BI94]. Recall that the John ellipsoid of a convex set in Euclidean 

space is the unique ellipsoid of largest volume inscribed in it [MS86]. 

LEMMA 6.1: Let (V d, 11.1[) be a Banach space. Let [[. [[E be the Euclidean norm 

determined by the John ellipsoid of the unit ball of [1. [[. Then there exists a 

decomposition of []. ]1~ into rank-1 quadratic forms: 

N 

i=-1 

such that N < d(d+ 1)/2 + 1, A~ > 0 for all i, ~A~  = d, and Li: V ~ ~ are 

linear functions with Ilfdl* = 1 where [[" [1" is the dual norm to I1 II. 

7. A n  a r e a - n o n e x p a n d i n g  m a p  

Let X be a compact Riemannian manifold, Y a topological space, and let 

~: X --+ Y be a continuous map inducing an epimorphism in one-dimensional 

real homology. Then one defines the relative stable norm [[. [[st/~, on Hi(Y;  ~) 

by 

[]a]]st/~ = inf{[[/3[[st :/3 E HI (X;R) ,  ~,(/3) = a}, 

where [i" list is the ordinary ("absolute") stable norm. The stable norm itself 
may be thought of as the relative stable norm defined by the Abel-Jacobi map 

to the torus H i ( X ,  ~)/H1 (X, Z)~. 

Definition 7.1: We will say that a Lipschitz map A: X -+ M between Rie- 

mannian manifolds is "non-expanding on all d-dimensional areas" if for every 

smooth d-dimensional submanifold Y of X, one has vold(A(Y)) _< vola(Y). 

Equivalently, Jac(A]v) _< 1 wherever A]y is differentiable. 

Let X n be a compact Riemannian manifold, V d a vector space and F a lattice 

in V. We will identify V and H1 (V/F; ~). 

PROPOSITION 7.2: Let ~: X --4 V/F be a continuous map inducing an epimor- 

phism of the fundamental groups and [I " tIE denote the Euclidean norm on V 

defined by the John ellipsoid of the relative stable norm [[. [[st/~. Then there 

exists a Lipschitz map A: X --+ (V/F, [[. [[E) which is homotopic to ~ and 

non-expanding on all d-dimensional areas, where d = dim(V). 

The proof of Propostion 7.2 appears at the end of this section. There is a 

natural isomorphism F _ 7h (V/F) _~ 7h (X ) / ke r (~ , ) .  Consider a covering space 
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X of X defined by the subgroup ker(~.)  of 7rl (X). Then F acts on X as the deck 

group 7rl ( X ) / k e r ( ~ . ) .  This action will be written additively, as in (7.1) below. 

It is sufficient to construct a Lipschitz map X --+ V which is F-equivariant and 

does not expand d-dimensional areas. We need the following lemma. 

L * = LEMMA 7.3: For every linear function L: V --+ ~ such that I] Iist/v 1 there 

exists a 1-Lipschitz function f:  X --+ ~ such that 

(7.1) f ( x  + v) = f ( x )  + L(v) 

for ali x E X and v E F. 

Proo~ Fix a n x o  E X, consider the orbit Xo = {Xo+V : v  E F} and define 

a function fo: Xo -4 I~ by fo(Xo + v) = L(v).  Note that  fo satisfies (7.1) for 

x E Xo. For every v E F and x E X,  one has L(v) ~_ Iivi[st/~ and ]]viist/~ is no 

greater than the distance between x and x + v. Hence f0 is 1-Lipschitz. Every 

1-Lipschitz function defined on a subset of a metric space admits a 1-Lipschitz 

extension to the whole space, by the triangle inequality. Moreover, an extension 

can be chosen so that  the equivariance (7.1) is preserved. For example, we can 

set f ( x )  = inf{f0(y) + [xy[:y E Xo}, where [xy[ denotes the distance. I 

Proof of Proposition 7.2: Applying Lemma 6.1 to the norm [[. [[st/~ yields a 

decomposition 
N 

i----1 

L * = where Ai > 0, ~ A i  = d, Li E V* and II ilist/~ 1. Then a l i n e a r  map 

L:  V "+ ]1~ g defined by 

~--- ,~1/2 r z \ 1/2 
L(x)  (A~/2LI(x), 2 - 2 ( z )  . . . .  ,A N LN(X)) 

is an isometry from (V, [I • liE) onto a subspace L(V)  of l~ N , equipped with the 

restriction of the standard coordinate metric of I~ g . 

By Lemma 7.3, for every i = 1 , 2 , . . . ,  N there exists a 1-Lipschitz function 

fi: X --+ II~ such that  f i (x  + v) = f i (x)  + Li(v) for all x E X and v E F. Define 

a map F: X - ~  ]~g by 

1/2 1/2 
(7.2) F(x)  = (All/2fl(x),A2 f 2 ( x ) , . . . , A  N fN(X)).  

Observe that  both L and F are F-equivariant with respect to the following 

action of F on II(N: 

F x ll~ N --~ R N, (v ,x)  ~ x + L(v).  
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Now let PrL(V) : I~ N ~ L(V)  be the orthogonal projection to L(V).  Then the 

composition L -1 o PrL(V) oF  is a F-equivariant map from X to V. Since the 

projection is nonexpanding and L is an isometry, it suffices to prove that  the 

map F of (7.2) is nonexpanding on &dimensional areas. 

Let Y be a smooth &dimensional submanifold of X. Since F is Lipschitz, 

the restriction F l y  is differentiable a.e. on Y. Let g E Y be such that  F l y  is 

differentiable at y, and let A = d(FIy) :  TyY --+ II~ N . Then we obtain 

t race(A'A) = E Add(fi Iy)l _< hi = d 

since the functions f~ are 1-Lipschitz . By the inequality of geometric and 

arithmetic means, we have 

Jac(FIy)(x ) = det(A*A) 1/~ 

1 • d/~ 
_< ( ~ t r a c e ( A  A)) 

_<1, 

proving the proposition. | 

8. P r o o f  of  T h e o r e m  2.3 and T h e o r e m  4.1 

Consider the Jacobi torus J I (X)  = H i ( X ,  ~)/H1 (X, Z)R and the Abel-Jacobi 

map Ax:  X --+ J1 (X) constructed in Proposition 7.2. 

Remark 8.1: The map A x  can be replaced by a smooth one by an arbitrarily 

small perturbation, in such a way as to expand &dimensional areas at most by 

a factor 1 + e. Our main tool will be the coarea formula; see below. We can 

also avoid the above smoothing argument, and use instead the current-theoretic 

version of the coarea formula, relying on H. Federer's theory of "slicing". Given 

an integral current T in a smooth oriented manifold M (e.g. in our case T = 

[M]), and a Lipschitz map f :  M ~ N, one can in a sense decompose T by 

f ,  obtaining currents (slices) (T, f , y )  supported in the fibers f - l ( y ) ,  for a.e. 

y E N. If T is a cycle then so are the slices; if T is a submanifold and f is 

smooth, then the slices at regular values of f are just (integration over) the 

typical fibers of the map. The main properties of this operation are given in 

[Fe69, Thm 4.3.2, p. 438]. In particular, item 4.3.2(2) is a version of the coarea 

formula. In section 4.4, Federer shows that  the usual homology groups of a 

reasonably good space (e.g. manifold in our case) coincide with the ones defined 

via currents. 
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Proof of Theorem 2.3: We exploit the coarea formula [Fe69, 3.2.11], [Ch93, 

p. 267] as in [Gr83, Theorem 7.5.B]. 

Away from the negligible singular set, the smooth map is a submersion. 

Therefore the metric on X can be modified by a volume-preserving deformation 

so that the map actually becomes distance decreasing, up to an arbitrarily small 

amount. Note, however, that  the coarea formula could be applied even without 

replacement by a short map. Formally we only need two facts: 

1. if the map is area-nonincreasing, then the volume is no smaller than the 

area of the image times the minimal area of a fiber, 

2. almost every fiber is "typical" and hence has area no less than the gener- 

alized degree deg(Ax) ,  cf. inequality (8.1). 

Let S = A x  1 (p) be the surface which is a regular fiber of least (n - b)-volume. 

(If there is none, choose S to be within e > 0 of the infimum, and then let 

e ~ 0.) Then 

(8.1) deg(.4x) stsys I (g)b < vOln-b(S) stsys 1 (g)b. 

Note that .Ax induces isometry in Hi( ,  ~) with respect to the stable norm of 

the metric g. Hence 

deg(Ax)  stsysl(g) b _< voln-b(S) stsysl(J1 (X), I1' II) b. 

We now replace the stable norm I1' II by the flat Euclidean metric I1" lie defined 

by the John ellipsoid of the stable norm: 

deg(Ax)  stsysl (g) b _< vol~_b(S) stsysl ( J l (Z ) ,  I1" liE) b. 

By definition of the Hermite constant, 

deg(Ax)  stsys 1 (g)b <_ voln_b(s)Tb/2 vOlb(J1 (X), [[. lIE). 

Now we apply the coarea formula to our map which is decreasing on 

b-dimensional volumes, to obtain voln-b(S)vOlb(J1 (X), [[" [[E) ~ voln(X), com- 

pleting the proof. | 

Proof of Theorem 4.1: We apply Theorem 2.3 together with the inequality 

sys 7r~ (g) < a2 deg(Ax).  Here Pu's  inequality does not suffice. Indeed, a typical 

fiber of .Ax may not be diffeomorphic to lied ~2 . An application of Pu 's  inequality 

(3.1) yields a suitably short loop which is essential in the typical fiber. However, 

a loop which is essential in the typical fiber may not be essential in the ambient 

manifold X. Thus, we need a generalisation of Pu's inequality. The required 
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generalisation is inequality (3.4) above, cf. [CK03], applied to the composed 

map ¢: S - ~  X ~ K.  | 

ACKNOWLEDGEMENT: We are grateful to J. Fu for help with integral currents 

and slices in Section 8. 
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